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PROBLEM OF DETERMINING THE EFFECTIVE TEMPERATURE IN 

COMBUSTION CHAMBERS OF HEAT AND POWER INSTALLATIONS 

V. P. Trofimov, K. S. Adzerikho, 
and F. D. Lozhechnik 

UDC 536.3:535.34 

The effect of the dimensions of the constant temperature core in a radiating 
planar, nonisothermal, nonscattering layer on the magnitude of the effective 
temperature is examined. Computed effective temperatures of such a layer, 
obtained with the use of various methods, are also compared. 

As studies of the temperature fields in furnaces in modern large-volume boiler systems 
show, at some distance from the section in which the burners are located, the temperature 
of the furnace gases is equalized at the center [i]. As the number of burners increases, 
the probability for realizing a flat temperature profile increases. However, henceforth, 
the nature of the temperature profile T(x) along the flame in the furnace section changes 
due to convection, gradually transforming into a Shlikhting-type temperature profile [2]. 
In this connection, there naturally arises the problem of the effect of the size of the 
constant temperature core (plateau or "table") on the effective temperature Tef f of the 
radiating space, which has the type of cross-sectional temperature profile indicated. 

A. V. Lykov Institute of Heat and Mass Exchange. Institute of Physics. Institute of 
Mathematics, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno- 
Fizicheskii Zhurnal, Vol. 40, No. i, pp. 109-114, January, 1981. Original article submitted 
January ii, 1980. 

78 0022-0841/81/4001-0078507.50 �9 1981 Plenum Publishing Corporation 



\ 

2 "Q 

"C o 

Fig. i. Computational 
scheme for the temperature 
profile in a planar layer: 
i) T c=0; 2) 0.5. 

Taking into account the ratios of the linear dimensions of the cross section of the 
furnace of a powerful boiler system in the first approximation, in calculating heat exchange, 
the real system can be replaced by a model with a planar radiating layer. In a series of 
works [3, 4], methods are proposed for calculating the radiative heat exchange for such 
models with a given temperature field, while in [5, 6], justification was provided for cor- 
rectly including the effective temperature of a planar radiating nonscattering layer, start- 
ing from an exact solution to the equation of radiative transfer in the presence of reflect- 
ing and radiating boundary surfaces. In particular, the temperature distribution existing 
at the center of the profile of the constant temperature core is examined in [6]. In the 
present work, we examine the effect of the size of this core on the value of the effective 
temperature determined, and the results are compared with the computed effective temperatures 
of a planar layer, obtained using approximate methods and presented in [3, 7, 8]. 

The model used for the computations consist of a symmetrical temperature profile (Fig. 
I), in which the temperature in the near-wall region follows a third degree parabolic law 
and has a flat appearance (curve 2). Such a temperature profile for the reduced tempera- 

ture @ = ~T can be given analytically in the following form [6]: 

( 
iO w +(Oc__ 0w).6.7 5 ~(T--~o) 0 ~ s  ; 3 

~k 
o ( ~ )  = { o c ,  ~ ~ < ~ < ~ o  _ ~ ;  ( 1 )  

I0,~ (~o - -  ~)~ (~ - -  ~k - -  ~o) +(or Ow). 6.75 K~K*o, 3 

( Tk 
x 

where T = y •  i s  the op t i ca l  th ickness  of the layer ;  Ts= (2/3)T k. 
0 

In the calculations, the magnitude of Tc, i.e., the region along the layer in which the 
temperature is constant and equals Tc, constituted 0, 0.2, 0.5, 0.8, and 0.9 of the total 
optical thickness of the layer To. The computed effective reduced temperaturesOeff = %Teff 
[6] are obtained by varying the optical thickness To from 0.5 to 20; the maximum reduced 
temperature along the axis (in the core) Oc lies in the range 1.10-3-15"10 -3 m.K and the 
ratio Oc/Ow, which characterizes the gradient of the temperature distribution for values 
equal to 1.5, 2.0, 2.5, and 3.0. The limits for the maximum reduced temperature were chosen, 
as indicated in [6], according to the values of the real temperature and the region of wave- 
lengths of thermal radiation that occur in the combustion chambers of power installations. 

As could be expected, the results of the computations showed that the effective reduced 
temperature of a planar layer@eff depends strongly on the form of the temperature distribu- 
tion (Fig. 2). The sharpest change occurs when the size of the constant temperature zone 
(core) approaches in magnitude the total optical thickness of the layer To. In addition, 
as the value of To increases, the dependence of Oeff on T e for Oc >5"10-3 m.K with T+O 
reaches the asymptote (curves 4 and 5 on Figs. 2b and c). For small values of To, the 
dependence of @eff on Tc approximates a linear function for the entire range of variation 
in Oc. Noting that the conclusions indicated above follow from the well-known fact that the 
radiation from the high temperature zones is "locked in" by the cold near-wall layers, it 
should also be noted that this well-known fact must be evaluated quantitatively. For this 
purpose, Fig. 2 displays the exact data, while the appropriate calculations are performed 
in [9]. 
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Fig. 2. The reduced temperature of a planar radiating layer as a 
function of the size of the constant temperature core Tc (solid 
lines -- Oc/Ow =1.5; dashed lines -- Oc/~w= 3.0): a) Oc =1 "10-3 m- 
K; b) 5-10 -3 m.K; c) 15"10 -3 m.K; i) To =0.5; 2) 2; 3) 5; 4) i0; 5) 
20. 

The problem of radiation from nonisothermal spaces has, in principle, been examined 
from the very beginning of the theory of radiative transfer. The number of publications 
concerned with engineering applications of the theory of radiative heat exchange continuously 
increases. Recently, the idea of expanding characteristic radiation function (or Planck's 
function) in a series with respect to the coordinates has been widely disseminated. This 
method is presented in greatest detail in the researches of Mikk [3, 7, 8]. With the help 
of this technique, the author was able to deduce formulas for determining the effective tem- 
perature and the emissivity of nonisothermal spaces with different configurations (planar 
layer, semiinfinite slit, infinite cylinder, etc.). A numerical example of the computation 
of the effective temperature and radiation from a planar layer is examined in [3] for a tem- 
perature profile of the form 

V~I p2 0 ~ p~ 1, 3 (2)  
T = r~ --4 ' 

or in our notation 

r = ~  1 - - - - r  ~ - -  ~ , (3) 
To 2 

where T c= 2Tw = 2000~ In [3], the effective temperature is found for three cases: integ- 
ral (gray) radiation and manochromatic radiation with wavelengths % = 0.65 >m and % = 15 ~m. 
It is of interest to compare the results of these calculations with data on Teff obtained 
with the use of an exact solution to the equations of radiative transfer for a planar layer 
as in [6]. A comparison, presented in Fig. 3, leads to the conclusion that the results com- 
puted according to these methods agree very well. The greatest disagreement is observed for 
the case of short wavelength radiation (k= 0.65 ~m), and furthermore, this disagreement with 
respect to the effective temperature Teff determined according to our technique for this 
wavelength increases for larger values of the optical thickness of the layer from 0.3 to 
7.2% for To =i0. If for %=0.65 ~m the effective temperatures T* [3] are mainly higher than 
Teff, then for ~ = 15 ~m, as can be seen in Fig. 3, for small values of To the magnitude of 
T* is somewhat lower, while for large to it is somewhat higher, and in addition, the differ- 
ence between them (T* and Teff) does not exceed 2% over the entire range of optical thick- 
nesses of the planar layer examined (To = i-i0); 

The effective temperature T* [3], determined for the integral radiation, differs from 
Tef f within the limits of the disagreement occurring for the cases of monochromatic radiation 
indicated above. 

Thus, the technique for calculating the radiation in nonisothermal spaces, developed 
by expanding the characteristic radiation function in a Taylor series with respect to the 
coordinate along the direction of a ray [3], is valid and, on the whole, gives results that 
agree well with the exact solution for a planar layer [5, 6]. 
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Fig. 3. Comparison of the results of a calculation of the effec- 
tive temperature of a radiating nonisothermal planar layer (T c = 
2000~ Tc/Tw =2): i) ~= 0.65 ~m; 2) integral (gray) radiation; 
3) % = 15 pm. Solid curves correspond to a calculation according 
to [6]; the dashed lines correspond to a calculation according to 
[3]. Teff in ~ 

Fig. 4. The ratio Teff/T c and the effective temperature of a 
planar layer with a nonisothermal medium Tef f (K) for Tc = 2000~ 
as a function of the optical thickness of the layer for different 
forms of the cross-sectional temperature profile: i) TI(T) [2]; 
2) Tg(T) [3]; 3) T6(T) [6]; 4) Ts(T) [6]. 

The differences occurring in the calculations (<10%) can be explained, in our opinion, 
as follows: for short wavelengths, by the great sensitivity of Planck's function to temper- 
ature; and, for T+~ (for large values of ~o), by the increase in the error when taking 
into account a large number of terms in the series expansion. 

Figure 4 shows the effective integral temperature of a planar radiating nonisothermal 
layer as a function of the optical thickness for various forms of the temperature distribu- 
tion throughout the cross section, computed according to the technique in [5]. Curve 1 cor- 
responds to Shlikhting's temperature profile TI(T), realized in an established turbulent 
flow [2]: 

T i ( ~ )  = T w 
�9 0 { ' (4) 

curve 2 corresponds to the temperature profile Tg(T) according to formula (3); curves 3 and 
4 correspond to temperature profiles T6(r) and Ts(r) according to formula (i) for the values 
T s=0.25ro and T s=0.05T0, respectively.* Thus the last two temperature profiles have 
a constant temperature core equal to Tc = 0.5To and Tc = 0.9z0 

The calculations were performed for the conditions T c = 2000~ and T c = 2T w. However, 
since the form of the analytic expressions for the temperature as a function of the optical 
thickness of the layer for the indicated temperature profiles (I), (3), and (4) presumes a 
linear dependence of Teff on Tc, the results of the calculations can be generalized to arbi- 
trary values of the given (design) quantity Tc, so that the figure contains a second scale 
that characterizes the ratio Teff/T c. 

In conclusion, it should be noted that for convenience in practical applications, it 
is useful to represent the final results of the calculations of radiative heat exchange in 
the form of nomograms and graphs for temperature distributions that are most easily realized 
in combustion chambers of heat and power installations. A careful analysis of such repre- 
sentations will reveal simple analytic expressions for the correct determination of the 
effective temperature of heat carriers in power installations, as done in [9] for a noniso- 
thermal, radiating, nonscattering, planar layer. This, undoubtedly, greatly simplifies the 
engineering method for computing heat exchange processes in different kinds of power instal- 
lations. 

*Here, the labels used for the temperature profile in [6] are retained. 
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NOTATION 

T, temperature; Tef f and T*, effective temperatures determined according to the tech- 
niques in [6] and [3], respectively; e = %T, reduced temperature according to [6]; T, optical 
thickness of the layer; To, total optical thickness of the layer being studied; Tc, optical 
thickness of the constant temperature core; x, a coordinate; • (x), absorption coefficient in 
the medium. The following indices are used: eff, effective; w, bounding surface (wall); 
c, center of the layer. 
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